A voxel-based lidar method for estimating crown base height for deciduous and pine trees

نویسندگان

  • Sorin C. Popescu
  • Kaiguang Zhao
چکیده

The overall goal of this study was to develop methods for assessing crown base height for individual trees using airborne lidar data in forest settings typical for the southeastern United States. More specific objectives are to: (1) develop new lidar-derived features as multiband height bins and processing techniques for characterizing the vertical structure of individual tree crowns; (2) investigate several techniques for filtering and analyzing vertical profiles of individual trees to derive crown base height, such as Fourier and wavelet filtering, polynomial fit, and percentile analysis; (3) assess the accuracy of estimating crown base height for individual trees, and (4) investigate which type of lidar data, point frequency or intensity, provides the most accurate estimate of crown base height. A lidar software application, TreeVaW, was used to locate individual trees and to obtain per tree measurements of height and crown width. Tree locations were used with lidar height bins to derive the vertical structure of tree crowns and measurements of crown base height. Lidar-derived crown base heights of individual trees were compared to field observations for 117 trees, including 94 pines and 23 deciduous trees. Linear regression models were able to explain up to 80% of the variability associated with crown base height for individual trees. Fourier filtering used for smoothing the vertical crown profile consistently provided the best results when estimating crown base height. © 2007 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimating biomass of individual pine trees using airborne lidar

Airborne lidar (Light Detection And Ranging) is a proven technology that can be used to accurately assess aboveground forest biomass and bio-energy feedstocks. The overall goal of this study was to develop a method for assessing aboveground biomass and component biomass for individual trees using airborne lidar data in forest settings typical for loblolly pine stands (Pinus taeda L.) in the sou...

متن کامل

Estimating Biophysical Parameters of Individual Trees in an Urban Environment Using Small Footprint Discrete-Return Imaging Lidar

Quantification of biophysical parameters of urban trees is important for urban planning, and for assessing carbon sequestration and ecosystem services. Airborne lidar has been used extensively in recent years to estimate biophysical parameters of trees in forested ecosystems. However, similar studies are largely lacking for individual trees in urban landscapes. Prediction models to estimate bio...

متن کامل

Extraction of Mangrove Biophysical Parameters Using Airborne LiDAR

Tree parameter determinations using airborne Light Detection and Ranging (LiDAR) have been conducted in many forest types, including coniferous, boreal, and deciduous. However, there are only a few scientific articles discussing the application of LiDAR to mangrove biophysical parameter extraction at an individual tree level. The main objective of this study was to investigate the potential of ...

متن کامل

Development of a Procedure for Vertical Structure Analysis and 3d-single Tree Extraction within Forests Based on Lidar Point Cloud

A procedure for both vertical canopy structure analysis and 3D single tree extraction based on Lidar raw point cloud is presented in this paper. The whole study area is segmented into small study cells by a raster net. For each cell, a normalized point cloud whose point heights represent the absolute heights of the ground objects is generated from the original Lidar raw point cloud. The main tr...

متن کامل

Combined Tree Segmentation and Stem Detection Using Full Waveform Lidar Data

The study highlights a new method for the delineation of tree crowns and the detection of stem positions of single trees from dense airborne LIDAR data. At first, we combine a method for surface reconstruction, which robustly interpolates the canopy height model (CHM) from the LIDAR data, with a watershed algorithm. Stem positions of the tallest trees in the tree segments are subsequently deriv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008